Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.30.21268554

ABSTRACT

In previously unvaccinated and uninfected individuals, non-RBD SARS-CoV-2 spike-specific B cells were prominent in two distinct, durable, resting, cross-reactive, “pre-existing” switched memory B cell compartments. While pre-existing RBD-specific B cells were extremely rare in uninfected and unvaccinated individuals, these two pre-existing switched memory B cell compartments were molded by vaccination and infection to become the primary source of RBD-specific B cells that are triggered by vaccine boosting. The frequency of wild-type RBD-binding memory B cells that cross-react with the Omicron variant RBD did not alter with boosting. In contrast, after a boost, B cells recognizing the full-length Omicron variant spike protein expanded, with pre-existing resting memory B cells differentiating almost quantitatively into effector B cell populations. B cells derived from “ancient” pre-existing memory cells and that recognize the full-length wild-type spike with the highest avidity after boosting are the B cells that also bind the Omicron variant spike protein. Abstract Figure

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.18.473308

ABSTRACT

Multisystem Inflammatory Syndrome in Children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory systemic illness characterized by SARS-CoV-2 antigenemia, cytokine storm and immune dysregulation; however, the role of the neutrophil has yet to be defined. In adults with severe COVID-19, neutrophil activation has been shown to be central to overactive inflammatory responses and complications. Thus, we sought to define neutrophil activation in children with MIS-C and acute COVID-19. We collected samples from 141 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 67 pediatric controls. We found that MIS-C neutrophils display a granulocytic myeloid-derived suppressor cell (G-MDSC) signature with highly altered metabolism, which is markedly different than the neutrophil interferon-stimulated gene (ISG) response observed in pediatric patients during acute SARS-CoV-2 infection. Moreover, we identified signatures of neutrophil activation and degranulation with high levels of spontaneous neutrophil extracellular trap (NET) formation in neutrophils isolated from fresh whole blood of MIS-C patients. Mechanistically, we determined that SARS-CoV-2 immune complexes are sufficient to trigger NETosis. Overall, our findings suggest that the hyperinflammatory presentation of MIS-C could be mechanistically linked to persistent SARS-CoV-2 antigenemia through uncontrolled neutrophil activation and NET release in the vasculature. One Sentence Summary Circulating SARS-CoV-2 antigen:antibody immune complexes in Multisystem Inflammatory Syndrome in Children (MIS-C) drive hyperinflammatory and coagulopathic neutrophil extracellular trap (NET) formation and neutrophil activation pathways, providing insight into disease pathology and establishing a divergence from neutrophil signaling seen in acute pediatric COVID-19.


Subject(s)
Cryopyrin-Associated Periodic Syndromes , COVID-19 , Chronic Disease , Inflammatory Bowel Diseases
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3866846

ABSTRACT

The SARS-CoV-2 genome encodes many proteins that directly compromise Type I interferon-mediated innate immunity. In acute COVID-19 the consequent dysregulated hyper-inflammatory state alters the milieu of draining lymph nodes and indirectly induces anatomically restricted, weeks-long transient defects in adaptive immunity. The striking attenuation of discrete aspects of T cell immunity may facilitate the evolution of more transmissible viral variants. No techniques employed to date, including single nuclear sequencing, have revealed information on pulmonary T cell subsets in severe COVID-19. Here we demonstrate an unexpected paucity of total CD8+T cells and CD8+Granzyme B+ T cells in the lung parenchyma in acute COVID-19. Apart from broadly compromising the generation of T FH cells in draining lymph nodes, acute COVID-19 is also linked to attenuated CD8+ T cell activation and infiltration of the lungs, and the delayed pulmonary accumulation of CD4+T cells with a cytotoxic phenotype.Funding Information: This work was supported by NIH U19 AI110495 to SP. Funding for these studies from the Massachusetts Consortium of Pathogen Readiness, the Mark and Lisa Schwartz Foundation and Enid Schwartz is also acknowledged.Declaration of Interests: SP is on the Scientific Advisory Board of Abpro Inc and BeBio. Thereare no other competing interests for any of the authors.Ethics Approval Statement: This study was conducted with the approval of the Institutional Review Boards at the Massachusetts General Hospital and the Brigham and Women’s Hospital.


Subject(s)
T-Lymphocytopenia, Idiopathic CD4-Positive , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.19.444859

ABSTRACT

T follicular helper (Tfh) cells play a critical role in T-dependent humoral immune responses. While genetic programs controlling Tfh cell differentiation have been extensively studied using murine models, studies in humans have been hampered by the lack of a robust in vitro differentiation system for Tfh cells. We characterized epigenomic landscapes across stages of Tfh cell differentiation in a healthy human tonsil using ATAC-Seq and CUT&RUN for selected histone modifications. We combined these epigenomic datasets and integrated them with the reference human protein interactome using a novel network propagation approach. Our approach uncovered subnetworks integral to Tfh cell differentiation. These subnetworks captured known Tfh cell drivers to a greater extent than conventional gene-centric analyses would, and also revealed novel modules that may be required for Tfh cell differentiation. We find that human Tfh cell subnetworks are functionally associated with specific immune signaling cascades including cytokine receptor driven pathways. Analyses of transcriptomic data revealed that in addition to these immune pathways being significantly dysregulated in severe COVID-19, the corresponding Tfh cell subnetworks are also transcriptionally perturbed to a similar extent. This provides a molecular mechanistic basis for the previously observed impaired Tfh cell differentiation and loss of germinal centers in severe COVID-19.


Subject(s)
COVID-19
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.23.21253885

ABSTRACT

The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Subject(s)
Fibrosis , Pneumonia , COVID-19
8.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3813278

ABSTRACT

The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.Funding: This work was supported by NIH U19 AI110495 to SP. Funding for these studies from the Massachusetts Consortium of Pathogen Readiness, the Mark and Lisa Schwartz Foundation and Enid Schwartz is also acknowledged.Declaration of Interest: None to declare. Ethical Approval: This study was performed with the approval of the Institutional Review Boards at the Massachusetts General Hospital and the Brigham and Women’s Hospital.


Subject(s)
Lung Diseases , Pneumonia , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL